
Build Your Own Web App With
The WordPress REST API

WP + Javascript = Amazing

What Is A SPA?

• A single page web app is a website that is built inside of a single HTML
document.

• A javascript library or framework is used to provide functionality.

• Content is typically loaded via an API into the page.

• Users may navigate to additional URLs on the site, the document itself
does not change. The framework simply updates the DOM to reflect the
changing view and content.

We’re Using Vue.js

• Easy to learn even if you don’t have experience with other libraries.

• Good documentation.

• Strong community involvement and lots of auxiliary projects.

• Small file size.

• Speedy.

Development Environment

• Install Node on your computer if you don’t have it already. https://
nodejs.org/en/download/

• Install the Vue CLI

• VS Code is very nice for working with Vue and other frameworks. https://
code.visualstudio.com/

• The starter project for this talks is available at https://github.com/
billrobbins/WPVue

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://code.visualstudio.com/
https://code.visualstudio.com/

Vue Is Similar To WordPress
<main>
 <?php while (have_posts()) : the_post(); ?>
 <?php the_pos_thumbnail(); ?>
 <?php the_title('<h1>', '</h1>'); ?>
 <?php the_content(); ?>
 <?php endwhile; ?>
</main>

 <main class="main-content" v-if="post && post != ''">

 <h1 v-html="post.title.rendered"></h1>
 <div v-html="post.content.rendered"></div>
 </main>

Conditionals

 <main v-if="some.value">
 <p>{{some.value}}</p>
 </main>

<?php if ($some_variable !='') { ?>
 <main>
 <p><?php echo $some_variable; ?></p>
 </main>
<?php } ?>

These allow us to display items based on variables.

Loops

<article v-for="post of posts":key="post.id">

 <router-link :to="{ name: 'Post', params: { id: post.slug }}">

 </router-link>

 <h2>
 <router-link :to="{ name: 'Post', params: { id: post.slug }}">
 {{post.title.rendered}}
 </router-link>
 </h2>
 <div v-html="post.excerpt.rendered"></div>

</article>

Create a group of items from a data set.

Vue.js From the Ground Up
• The index.html file loads first.

• Inside it, a special div loads up the app.

• The root of the app, is a file called App.vue. All of the components inside
the app begin in this file.

• Each component can have a template as well as functionality. The template
is placed at the top of the component file and the functionality in the script
section below that.

• The components are loaded into the App.vue file via a special tag called the
Router View.

 routes: [
 {
 path: '/blog/page/:id',
 name: 'Blog',
 component: Archive
 },
 {
 path: '/post/:id',
 name: 'Post',
 component: Post
 },
 {
 path: '/:id',
 name: 'Page',
 component: Page
 }
]

Routing

• The browser URL tells the
router which component to
load.

• The component inserts its
content in the router view tag
inside of App.vue.

• Similar to WordPress’
template hierarchy.

How Do We Get The Content?
• Use a library called Axios to help us make HTTP calls

import axios from 'axios';

export const HTTP = axios.create({
 baseURL: `http://yoursite.com/wp-json/`
})

• This environment is used as a base so we can set the
URL to our source in one place.

• Each time after that, we can use HTTP as a constant to
reference all of this.

fetchData() {
 HTTP.get('wp/v2/pages?slug='+this.$route.params.id)

 .then((resp) => {
 this.page = resp.data[0]
 })
}

• This works with the router to pull the content that corresponds to the URL
in the browser.

• All of the data returned gets assigned to the page variable. For us to use
in our template.

<template>
 <main

class="main-content"
v-if="page && page != ''"
:key="page.id">

<h1>{{page.title.rendered}}</h1>
<div v-html="page.content.rendered"></div>

 </main>
</template>

• We check to see if the API is loaded first.

• We then pull the content from the response and assign
it to the spots in our template.

• The browser replaces the content in the Router View
with the new content.

Go Make Something Amazing
• Starter project on Github for you at https://github.com/billrobbins/WPVue

• Includes Page, Post and Archive components, routing and navigation
menus.

• Has simple fade transition between views.

• What to add?

• Comments

• Dynamic titles and descriptions.

https://github.com/billrobbins/WPVue

Bill Robbins
WPWebApps.com

@billrobbins

http://WPWebApps.com

